INTEROPERATE

Flocking-based optimized control of cooperative automated vehicles

Financed by The Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI), project number PNCDI PN-III-P1-1.1-TE, Human Resources Programme, Research projects for independent young research teams, Period: 01.2021-12.2022

[Română]

Cercetarea privind soluțiile de conducere conectate și extrem de automatizate pentru drumuri mai sigure are o relevanță strategică majoră pentru industria europeană, aceasta fiind una dintre prioritățile exprimate în mod clar în domeniul de focus „Digitalizarea și transformarea industriei și serviciilor europene” din Programul-cadru Orizont 2020. Pentru a optimiza fluxul de trafic, a crește siguranța și a reduce consumul de combustibil, vehiculele automate ar putea fi controlat ținând cont de vecinii lor prin decizii de cooperare utilizînd tehnologii de conectivitate. Scopul principal al acestui proiect a fost de a dezvolta un cadru general care să creeze capacitatea vehiculelor automate conectate de a-și coordona comportamentul de conducere prin utilizarea tehnicilor de optimizare bazate pe grupuri. Cadrul a inclus inteligența internă a vehiculului (legată de percepția mediului și capacitățile de conducere autonomă) și comunicarea fără fir (conectivitate) cu alte vehicule, precum și cu infrastructura inteligentă chiar din faza de proiectare a algoritmilor de control distribuit bazat pe grupuri pentru a optimiza fluxul de trafic, pentru a îmbunătăți siguranța, pentru a reduce consumul de combustibil, pentru a crește capacitatea drumurilor și pentru a reduce emisiile. Perspectiva interdisciplinară adoptată de acest studiu a urmărit să contribuie la dezvoltarea de noi cadre de modelare și strategii de control foarte avansate bazate pe optimizarea grupurilor în zone de aplicare care sunt caracterizate de medii de cooperare distribuite.

Îndeplinirea scopului principal enunțat pentru proiect s-a bazat pe un set de obiective specifice care vizează rezolvarea problemelor apărute în gruparea vehiculelor:

  • Obiectivul 1: definirea unui cadru de modelare realist pentru vehicule automate cooperante care include cuplările dintre vehicule și comunicarea V2X;
  • Obiectivul 2: dezvoltarea cadrului pentru regulatoare distribuite bazate pe grupuri, care utilizează cadrul de modelare de la primul obiectiv și ia în considerare cuplările dinamice dintre vehicule și comunicațiile fără fir; algoritmii au fost testați mai întâi într-un mediu de simulare (emulator) dezvoltat în Matlab/Simulink și utilizând mediul SUMO (Simulation of Urban Mobility) pentru vehicule automate cooperative;
  • Obiectivul 3: dezvoltarea software-ului în timp real pentru implementarea algoritmilor de control distribuit bazați pe grupuri pe sisteme încorporate care vor au fost testați experimental pe un grup de vehicule la scară de laborator (grup de roboți mobili); a fots efectuată, de asemenea, o analiză de performanță și o comparație cu algoritmi de reglare pentru vehicule de ultimă generație.

Riscul de accidente și poluarea sporită pe drumurile existente sunt probleme globale care depășesc granițele europene. Din punct de vedere științific, prin acest proiect, echipa de cercetare a dezvoltat algoritmi de control distribuit pentru grupurile cooperante de vehicule automatizate, care asigură performanțe mai bune pentru acestea. Impactul social este obținut prin obținerea unor drumuri mai sigure, cu un risc mai mic de accidente și stres și disconfort redus pentru șofer și pasageri. Din punct de vedere al mediului, algoritmii dezvoltați în cadrul acestui proiect pot contribui la reducerea CO2: vehiculele vor consuma mai puțin combustibil datorită rezistenței reduse la aer (impact economic). Mai mult, eficiența vehiculelor și capacitatea autostrăzilor și drumurilor urbane vor fi crescute.

Cel mai semnificativ rezultat obținut este dezvoltarea unor noi strategii de control cooperativ pentru vehiculele conectate cu scopul de a-și coordona comportamentul de conducere prin utilizarea tehnicilor de optimizare bazate pe grupuri, testarea făcându-se pe un pluton de vehicule la scară.

Members:

Constantin-Florin Caruntu, Grant director

Carlos-Mihai Pascal, young researcher

Paul-Corneliu Herghelegiu, young researcher

Anca Maxim, member, postdoctoral researcher

Ovidiu Pauca, member, doctoral student

Florin-Catalin Braescu, member, experienced researcher

Abstract:

The research on connected and highly automated driving solutions for safer roads has major strategic relevance for the European industry, this being one of the priorities expressed clearly in the focus area on “Digitising and transforming European industry and services” in the Horizon 2020 Framework Programme. To optimize the traffic flow, increase safety and reduce fuel consumption the pace of automated vehicles could be controlled w.r.t. their neighbors through cooperative decisions by using connectivity technologies (vehicle flocking). The main goal of this project is to develop a general framework that creates the ability of connected automated vehicles to coordinate their driving behavior by using flocking-based optimization techniques. The framework will include internal vehicle intelligence (related to environment perception and self-driving capabilities) and wireless communication (connectivity) with other vehicles as well as with the smart infrastructure even from the design phase of the flocking-based distributed control algorithm to optimize/smoothen the traffic flow, to improve safety, to reduce fuel consumption, to increase road capacity and to decrease the emissions. The interdisciplinary perspective adopted by this study is aimed at contributing to the development of new modeling frameworks and highly advanced control strategies based on flocking optimization in application areas that are characterized by distributed cooperative environments.

Objectives:

The fulfillment of the main goal stated for the project relies on a set of specific objectives that aim at solving the problems arising in vehicle flocking:

  • Objective 1: realistic modeling framework for cooperative automated vehicles which includes the couplings between the vehicles and the V2X communication;
  • Objective 2: developing framework for flocking-based distributed controllers, which uses the modeling framework from the first objective and considers the dynamical couplings between vehicles and wireless communications; it will be tested in a simulation environment (emulator) developed in Matlab/Simulink and Simulation of Urban Mobility (SUMO) for cooperative automated vehicles;
  • Objective 3: development of real-time software for implementing the designed flocking-based distributed control algorithms on embedded systems which will be experimentally tested on a lab-scale vehicle group (group of mobile robots); a performance analysis and comparison with state-of-art cooperative vehicles controllers will also be performed.

Working plan:

Work Package 1 (WP1): Develop a realistic distributed model for cooperative automated vehicle groups

Task 1.1. Select the most recent models for cooperative automated vehicles and develop a new distributed model that emphasizes the dynamical couplings between the vehicles

Task 1.2. Model the network-induced imperfections caused by the V2X communication technologies

Task 1.3. Develop a new realistic distributed model for cooperative automated vehicles which emphasizes the couplings between the vehicles and the wireless communication constraints

Task 1.4. Analyze the full model for control purposes

Deliverable 1: a report with the description of the imperfections model and dynamical couplings

Deliverable 2: a report with the description of the full model

Milestone 1: network-induced imperfections and dynamical couplings models

Milestone 2: full model for control purposes

Work Package 2 (WP2): Develop flocking-based distributed control strategies without inter-vehicular communications

Task 2.1. Develop flocking-based distributed control strategies relying on the realistic distributed model developed in WP1, Task 1.1

Task 2.2. Develop Matlab-SUMO emulator for automated vehicle groups

Task 2.3. Verify the string stability of the flocking-based automated vehicle group

Task 2.4. Analyze the flocking-based distributed control strategy

Deliverable 3: a report with the description of the flocking-based distributed control strategy

Deliverable 4: Matlab-SUMO emulator for automated vehicle groups

Deliverable 5: string stability analysis of the automated vehicle groups

Milestone 3: availability of the Matlab-SUMO emulator for automated vehicle groups

Work Package 3 (WP3): Develop flocking-based distributed control strategies with inter-vehicular communications

Task 3.1. Develop flocking-based distributed control strategies relying on the realistic distributed model developed in WP1, Task 1.3

Task 3.2. Develop Matlab-SUMO emulator for cooperative automated vehicle groups

Task 3.3. Verify the string stability of the flocking-based cooperative automated vehicle group

Task 3.4. Analyze the flocking-based cooperative distributed control strategy

Deliverable 6: a report with the description of the flocking-based cooperative distributed control strategy

Deliverable 7; Matlab-SUMO emulator for cooperative automated vehicle groups

Deliverable 8: string stability analysis of the cooperative automated vehicle groups

Milestone 4: availability of the Matlab-SUMO emulator for cooperative automated vehicle groups

Work Package 4 (WP4): Real-time implementation and performance analysis

Task 4.1. Development of real-time software for implementing the designed flocking-based distributed control algorithms on embedded systems

Task 4.2. Test the developed distributed control strategies on a lab-scale automated vehicle group

Task 4.3. Performance analysis of the real-time flocking-based distributed control algorithms

Task 4.4. Comparison of the developed control algorithms with state-of-art vehicle group controllers

Deliverable 9: a report with the description of the real-time software

Deliverable 10: a report with the description of the real-time lab-scale environment and the experimental results with performance analysis and comparisons

Milestone 5: availability of the real-time distributed controller for cooperative automated vehicle groups

Publications:

Lazar R.G., A.V. Militaru, C.F. Caruntu, and C. Patachia-Sultanoiu, Performance analysis of 5G communication based on distance evaluation using the SIM8200EA-M2 module, 26th International Conference on System Theory, Control and Computing (ICSTCC), 2022.

https://ieeexplore.ieee.org/document/9931884

Mihalcea M.A., C.M. Pascal, and S.I. Alupoaei, A View of the 5G Network in Iasi City for Automotive, 26th International Conference on System Theory, Control and Computing (ICSTCC), 2022.

https://ieeexplore.ieee.org/document/9931887

Pauca O., A. Maxim, and C.F. Caruntu. Vehicle Trajectory Planning for Collision Avoidance with Mobile Obstacles. 26th International Conference on System Theory, Control and Computing (ICSTCC), 2022, pp. 607-612.

https://ieeexplore.ieee.org/document/9931808

Maxim A., Pauca O., Maestre J.M. and C.F. Caruntu. Assesment of computation methods for coalitional feedback controllers, Eurupean Control Conference (ECC), 2022, pp. 1448-1453.

https://ieeexplore.ieee.org/document/9838577

Militaru A.V., R.G. Lazar, C.F. Caruntu, C.R. Comsa, and I. Bogdan, Analysis of message flow transmissions for an inter-vehicle communication scenario, 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2022.

https://ieeexplore.ieee.org/document/9847482

Pauca O., A. Maxim, and C.F. Caruntu. Communication topologies evaluation for a vehicle merging into a platoon on highway. 30th Mediterranean Conference on Control and Automation (MED), 2022, pp. 957-962.

https://ieeexplore.ieee.org/document/9837195

Lazar R.G., C.F. Caruntu, and C. Patachia-Sultanoiu, Simulated and practical approach to assess the reliability of the 5G communications for the Uu interface, 14th International Conference on Communications (COMM), 2022.

https://ieeexplore.ieee.org/document/9817312

Vargas A.N., C.F. Caruntu, J.Y. Ishihara, and H. Bouzahir, Stochastic stability of switching linear systems with application to an automotive powertrain model, Mathematics and Computers in Simulation, 191, 2022, pp. 278–287. (IF: 3.631 – Q1)

https://www.sciencedirect.com/science/article/abs/pii/S0378475421002834

Vargas A.N., J.Y. Ishihara, C.F. Caruntu, L. Zhang, and A.A. Nanha Djanan, Model predictive control of switching continuous-time systems with stochastic jumps: Application to an electric current source, IET Control Theory & Applications, 16, 2022, pp. 454-463. (IF: 2.67 – Q2)

https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/cth2.12242

Maxim A., and Caruntu C.F., A Coalitional Distributed Model Predictive Control Perspective for a Cyber-Physical Multi-Agent Application, Sensors, 21 (12), pp. 4041, 2021. (IF: 3.576 – Q1)

https://www.mdpi.com/1424-8220/21/12/4041

Pauca O., Maxim A., and Caruntu C.F., Multivariable Optimisation for Waiting-Time Minimisation at Roundabout Intersections in a Cyber-Physical Framework, Sensors, 21 (12), pp. 3968, 2021. (IF: 3.576 – Q1)

https://www.mdpi.com/1424-8220/21/12/3968

Pauca O., Maxim A., and Caruntu C.F., Cooperative Platoons Merging for Obstacle Avoidance on Highways, 25th International Conference on System Theory, Control and Computing (ICSTCC), Iasi, Romania, pp. 25-30, 2021. (IEEE Xplore)

https://ieeexplore.ieee.org/document/9607199

Lazar R.G., V. Varga, and C.F. Caruntu, TrueTime-based Analysis of a Distributed Generalized Predictive Control Architecture for CACC Systems, 25th International Conference on System Theory, Control and Computing (ICSTCC), 2021, pp. 612-617. (IEEE Xplore)

https://ieeexplore.ieee.org/abstract/document/9607048

Caruntu C.F., V. Varga, and R.G. Lazar., TrueTime Testing of Inter-Vehicular Communications for Cooperative Vehicles using Distributed Generalized Predictive Control, 29th Mediterranean Conference on Control and Automation (MED), 2021, pp. 77-82. (IEEE Xplore)

https://ieeexplore.ieee.org/document/9480183

Pauca O., Maxim A., and Caruntu C.F., Trajectory Planner based on Third-order Polynomials applied for Platoon Merging and Splitting, 29th Mediterranean Conference on Control and Automation (MED), Bari, Puglia, Italy, pp. 83-88, 2021. (IEEE Xplore)

https://ieeexplore.ieee.org/document/9480261

Pauca O., A. Maxim, and C.F. Caruntu, DMPC-based Data-packet Dropout Compensation in Vehicle Platooning Applications using V2V Communications, European Control Conference (ECC), 2021.

Caruntu C.F., A.V. Militaru, and C.R. Comsa, Cyber-Physical Systems-based Architecture for Signalized Traffic Corridors: Monitoring and Synchronized Coordination, 23rd International Conference on Control Systems and Computer Science (CSCS), 2021, pp. 314-321. (IEEE Xplore)

https://ieeexplore.ieee.org/document/9481022

Other relevant publications:

Pauca O., A. Maxim, and C.F. Caruntu. Control Architecture for Cooperative Autonomous Vehicles Driving in Platoons at Highway Speeds. IEEE Access, 9, 2021, pp. 153472-153490. (IF: 3.367 – Q2)

https://ieeexplore.ieee.org/abstract/document/9615037

View our solution

Our solution is based on creating the ability of passenger cars to coordinate their driving behavior when passing through intelligent intersections equipped with smart infrastructure.